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Outline

� Structured Adaptive Mesh Refinement (SAMR) overview

� Parallel implementation approaches used in SAMRAI

� Scaling issues on O(1000) processors

� Predictions of scaling issues on O(100,000) processors



SAMRAI provides infrastructure support 
for a variety of applications

� SAMRAI provides parallel AMR support to applications
— High-level reusable AMR algorithms (e.g. timestepping, dynamic 

grid generation)
— Parallel support (MPI)
— Parallel tools (VAMPIR, TAU)

— Checkpointing & restart support (HDF)

— Interfaces to solvers (PETSc, PVODE, hypre)

Current SAMRAI users regularly run on large processor systems

MCR Linux cluster IBM Blue Pacific TC2K Alpha cluster



Fine local mesh

Intermediate local mesh

Coarse global mesh

Structured AMR (SAMR) employs a 
dynamically adaptive “patch” hierarchy
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Patches
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� Based on methods of Berger, Colella, Oliger 

� Hierarchy defines nested levels of varying 
mesh resolution

� Data stored on patches covering logically 
rectangular index space



Patches distributed to processors to 
balance computational workload

1) Box regions constructed 2) Boxes split to 
construct 
patches

3) Patches 
bin-packed 
to processors
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4� Generally have multiple patches per processor

� Each level load balanced separately

� Spatial bin packing may be used to maintain locality of 
patches on processors



� Amortize cost of creating send/receive sets over multiple 
communication cycles

� Data from various sources packed into single message stream
— supports complicated variable-length data
— one send per processor pair (low latency)

Communication schedules create and 
store data dependencies

Send Set Receive Set

message buffer

MPI sendCell Data (double)

Particles

packStream(...);
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� Majority of computational spent in patch integration routines.  Library 
code < 5% of total wallclock time

Non-adaptive calculations using SAMRAI 
show good scaling

Scaled speedup for non-AMR hydro calculation



Dynamic mesh adapts to features 
as solution evolves 

Initial conditions:
inside sphere
density = 8.0
pressure = 40.0

outside sphere
density = 1.0
pressure = 1.0

Adaptive solution of 
Euler equations
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Adaptive problems show poor scaling in 
dynamic gridding operations

Time 
Advance

Re-gridding

November 2001

Non-scaled Euler 
calculation

IBM Blue Pacific



Summary of what we mean by 
“adaptive gridding”

Steps required to construct a new refinement level:

1. Tag cells (on coarser level) requiring refinement 
2. Cluster tagged cells into “box” regions
3. Cut up “box” regions into smaller boxes and determine 

processor distribution (I.e. load balance) 
4. Recompute communication schedules
5. Transfer data from old to new level

% Total Time
< 1%
1% - 46%
< 1%

2% - 87%
1-2%

Cluster tagged cells Load balance Transfer data to new level



Tagged Cell Clustering Algorithm 
(Berger Rigoutsos)

� Original implementation utilized global reductions to construct 
box histograms
— Scales poorly with problem size – number of global reductions 

grows by O(n2) (n = number gridcells)
— Scales poorly with processor count – cost of each global 

reduction is O(PlogP) (P = number processors)

� Replaced with a new “manager/worker” 
implementation
— Only processors holding tags participated in 

communication
— Manager processor accumulates tag 

histograms and distributes resulting boxes 
to all processors
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New implementation significantly 
reduces clustering costs  

� Hand coded MPI send/recvs
more effective than MPI 
communicators

� Most significant 
improvement on systems 
with slow global reductions
— Blue pacific has slower 

global reductions than 
newer IBM systems

— Less significant 
improvement observed on 
Linux MCR system

July 2002

Non-Scaled 
Euler calculation
IBM Blue Pacific
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Complexity in Comm. Sched. construction 
becomes significant in large problems

� Data dependencies between patches 
determined by identifying intersections.

� Original algorithm compared each patch 
index with all others in the problem.

� Complexity O(N2)  N = number of patches

Communication schedule 
construction costs grow O(N2) 
with problem size

i,jupper

i,jlower

Indices



Recursive Binary Box Tree (RBBT) 
efficiently describes spatial relationships

� Fast determination of box intersection

� Analogous to Octree representation
— uses bounding boxes and boxlists rather than cells 

and sub-cells

— For any given box, determines small subset of boxes 
that will possibly intersect it, for which we can apply 
naïve O(N2) algorithm.

� Complexity analysis: 
— Setup: O(N log(N))

— Query: walk the trees: O(log(N)) per box 

— Runtime complexity: O(N log(N)) – approximate, may 
vary for different box layouts.

List of boxes

Bounding boxes



Parallel performance of scaled linear 
advection benchmark

Scaled 
3 level linear advection problem

Linux MCR Cluster
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Scaling results after adaptive gridding 
algorithm modifications

Non-scaled
4 level Euler Problem

IBM Blue Pacific

Scaled 
3 level linear advection

Linux MCR Cluster
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Outline

� Structured Adaptive Mesh Refinement (SAMR) 
overview

� Parallel implementation approaches used in SAMRAI

� Scaling issues on O(1000) processors

� Predictions of scaling issues on O(100,000) processors



A new asynchronous clustering algorithm 
for very large scale parallel systems   

� Our new clustering algorithm is effective in reducing costs on 
O(1K) processors, but not O(10K)-O(100K) processors.

� Results from an asynchronous implementation will be presented 
(B. Gunney – Tues afternoon session CP44)

Time to Cluster - MCR
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More efficient graph-based algorithms 
required for O(10K)-O(100K) procs

� Naive implementation of box operations in gridding may invoke O(N2) 
algorithms (e.g. former communication schedule algorithm).

� We’ve developed more efficient graph-based algorithms that work on up 
to O(1000) processors, but further work will be required

� Difficult to assess beforehand because complexity is generally problem 
dependent.
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Storage of globally-known information 
may introduce memory issues 

� Current approach:  Patch lower/upper indices (i.e. “box”) known 
globally by every MPI process (to determine data locality, 
communication dependencies, etc.)

procs patches
per processor 
storage (MB)

0.5K
60K

2.5K-10K
300K-1200K

< 1 MB
20-80MB

Large overhead
for nodes of 

BG/L

requires consistency across processors: e.g.

BoxList boxes = level->getBoxes();

� Because # patches grows with  # processors, trivial overhead 
may become non-trivial on very large scale parallel systems 



Concluding Remarks

� Adaptive gridding costs are our largest source of parallel 
inefficiency
— Communication is cheap and scales well 

— Re-gridding operations that are trivial on small numbers of 
processors become significant on large numbers. 

— Tree-based algorithms successful in reducing these costs.

� Fully adaptive calculations are scalable to O(1000) 
processors 

� Further work required to handle O(100K) processors
—New Berger-Rigoutsos clustering algorithm proposed  

—Continued exploration into more efficient tree-based representations 
of spatial relationships between patches


